This article was downloaded by: On: *25 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Sulfur Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926081

Chemoselective synthesis of phosphorus ylides through the reaction of 2mercaptobenzimidazole and 2-hydroxybenzimidazole with triphenylphosphine and acetylepic esters

triphenylphosphine and acetylenic esters

Malek T. Maghsoodlou^a; Reza Heydari^a; S. Mostafa Habibi Khorassani^a; Mohammad K. Rofouei^b; Mahmoud Nassiri^a; Elaheh Mosaddegh^a; Asadollah Hassankhani^a

^a Department of Chemistry, University of Sistan and Balouchestan, Zahedan, Iran ^b Faculty of Chemistry, University of Tarbiat Moallem, Tehran, Iran

To cite this Article Maghsoodlou, Malek T. , Heydari, Reza , Khorassani, S. Mostafa Habibi , Rofouei, Mohammad K. , Nassiri, Mahmoud , Mosaddegh, Elaheh and Hassankhani, Asadollah
(2006) 'Chemoselective synthesis of phosphorus ylides through the reaction of 2-mercaptoben
zimidazole and 2-hydroxybenzimidazole with triphenyl
phosphine and acetylenic esters', Journal of Sulfur Chemistry, 27: 4, 341 — 346

To link to this Article: DOI: 10.1080/17415990600838101 URL: http://dx.doi.org/10.1080/17415990600838101

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RESEARCH ARTICLE

Chemoselective synthesis of phosphorus ylides through the reaction of 2-mercaptobenzimidazole and 2-hydroxybenzimidazole with triphenylphosphine and acetylenic esters

MALEK T. MAGHSOODLOU*†, REZA HEYDARI†, S. MOSTAFA HABIBI KHORASSANI†, MOHAMMAD K. ROFOUEI‡, MAHMOUD NASSIRI†, ELAHEH MOSADDEGH† and ASADOLLAH HASSANKHANI†

†Department of Chemistry, University of Sistan and Balouchestan, Zahedan, Iran ‡Faculty of Chemistry, University of Tarbiat Moallem, Tehran, Iran

(Received 3 March 2006; in final from 31 May 2006)

A one-step synthesis of dialkyl 2-(2-mercaptobenzimidazole-s-yl)-3-(triphenylphosphoranyliden) succinates and dialkyl 2-(2-hydroxybenzimidazole-n-yl)-3-(triphenylphosphoranyliden) succinates in fair yields are reported through the reaction of dialkyl acetylenedicarboxylates and triphenylphosphine in the presence of 2-mercaptobenzimidazole or 2-hydroxybenzimidazole.

Keywords: Chemoselective; Acetylenic esters; 2-Mercaptobenzimidazole; Triphenylphosphine; Stable phosphorus ylide; Geometrical isomers

1. Introduction

The synthesis of phosphorus ylides is important in organic chemistry because of the application of these compounds in the synthesis of organic products [1–14] especially the synthesis of naturally occurring products with biological and pharmacological activity [15]. Phosphorus ylides are usually prepared by deprotonation of phosphonium salts, which in turn, can be prepared most often by the reaction of triphenylphosphine and an alkyl halide [16]. In recent years, a three-component method has been developed [17–20] for the synthesis of organophosphorus compounds using a novel approach employing vinylphosphonium salts. This method is successful for the preparation of 1,4-diionic organophosphorus compounds [21, 22]. We wish to describe an efficient synthetic route of such derivatives from 2-mercaptobenzimidazole and 2-hydroxybenzimidazole stable phosphorus ylides. The benzimidazole moiety and its derivatives have the important pharmaceutical property and they have been used for medicinal

Journal of Sulfur Chemistry ISSN 1741-5993 print/ISSN 1741-6000 online © 2006 Taylor & Francis http://www.tandf.co.uk/journals DOI: 10.1080/17415990600838101

^{*}Corresponding author. Tel.: +98-541-2446565; Email: MT_maghsoodlou@yahoo.com

chemistry purposes [23]. Herein we outline the reaction of triphenylphosphine with dialkyl acetylenedicarboxylates (1) in the presence of (2) or (5) offering vinyl triphenylphosphonium salt (3), which in turn gives a series of phosphoranes after chemoselective attack of sulfur anion of the 2-mercaptobenzimidazole and nitrogen atom of the 2-hydroxybenzimidazole anion.

2. Results and discussion

The reactions of 2-mercaptobenzimidazole or 2-hydroxybenzimidazole with dialkyl acetylenedicarboxylates (1) in the presence of triphenylphosphine were proceeded in ethyl acetate solvent at room temperature and finished after approximately 3 hrs. The ¹H and ¹³C NMR spectrum of the crude product clearly indicated the formation of phosphoranes 4 and 6 (scheme 1). Any product other than 4 and 6 could not be detected by NMR spectroscopy. The ¹H NMR and ¹³C NMR spectra of compounds **4a** and **4b** exhibited two doublets at δ 6.05 (J = 17.4) and δ 6.11 (J = 17.9) for the S-CH-C-P and also a remarkable signal at δ 11.18 and δ 11.28 respectively could be observed for the N–H group in them. Furthermore in their IR spectra, a signal for S-H group was not observable. This evidence is indicative that 2-mercapto-benzimidazole has different behaviour with respect to 2-hydroxybenzimidazole. In addition, products **4a** and **4b** displayed ¹³C NMR resonances at δ 165.40 ppm and δ 165.03 ppm, respectively for the N=C-S unit [13, 14, 24]. The IR and ¹H NMR spectra of compounds **6a–c** showed a signal at $\upsilon = 3200 \text{ cm}^{-1}$ and $\delta 9.87$ for the O–H group, respectively. This data confirms that it is the nitrogen anion of 2-hydroxybenzimidazole that has attacked the vinyl triphenylphosphonium cation. The structures of compounds 4a,b and 6a-c were deduced from their IR, ¹H, ¹³C, and ³¹P NMR spectra. The mass spectrum of them displayed molecular ion peaks at appropriate m/z values. Any fragmentations involve loss of the side chains. The ¹H, ¹³C, and ³¹P NMR spectra of ylides **4a,b** and **6a,b** are consistent with

the presence of two isomers but only one geometrical isomer was observed for the di-tert-butyl derivative of **6a**, presumably, because of the bulky tert-butyl group. The ylide moiety of these compounds is strongly conjugated with the adjacent carbonyl group and rotation around the partial double bond in **4**-*E*, **4**-*Z*, **6**-*E*, and **6**-*Z* is slow on the NMR timescale at ambient temperature. ³¹P NMR chemical shifts and coupling constants in the major (M) and minor (m) geometrical isomers of compounds **4a,b** and **6a–c** are reported in the Experimental section.

In conclusion, we have prepared novel stable phosphorus ylides using a one-pot reaction between triphenylphosphine and acetylenic compounds in the presence of such related heterocycles as 2-mercaptobenzimidazole and 2-hydroxybenzimidazole. The present method carries the advantage that not only is the reaction performed under neutral conditions, but also the substances can be mixed without any activation or modification.

3. Experimental

Melting points and IR spectra of all compounds were measured on an Electrothermal 9100 apparatus and a Shimadzu IR-460 spectrometer respectively. Also the ¹H, ¹³C, and ³¹P NMR spectrum were obtained from a BRUKER DRX-500 AVANCE instrument with CDCl₃ as applied solvent at 500.1, 125.8, and 202.4 MHz respectively. Elemental analyses for C, H, N were performed using a Heraeus CHN-O-Rapid analyzer. In addition, the mass spectrum were recorded on a Shimadzu QP 1100 EX mass spectrometer operating at an ionization potential of 70 eV. Triphenylphosphine, dialkyl acetylenedicarboxylates (**1a–c**), 2-mercaptobenzimidazole (**2**) and 2-hydroxybenzimidazole (**5**) were purchased from Fluka (Buchs, Switzerland) and used without further purification.

3.1 Preparation of dimethyl-2-(2-mercaptobenzimidazole-s-yl)-3-(triphenylphosphanylidene)succinate (4a)

3.1.1 General procedure. To a stirred solution of 2-mercaptobenzimidazole (0.15 g, 1 mmol) and triphenylphosphine (0.26 g, 1 mmol) in 8 mL of ethyl acetate was added, dropwise, a mixture of dimethyl acetylenedicarboxylate (0.14 g, 1 mmol) in 4 mL of ethyl acetate at -5 °C over 10 min. After approximately 3 hrs stirring at room temperature, the reaction mixture was filtered and solid phase was separated from liquid phase. The solid phase was then washed with cold diethyl ether (3 × 5 mL, three times) in order to obtain the product as white powder. mp 196–198 °C, 0.53 g, yield 95%, IR (v_{max} , cm⁻¹) 1750 and 1608 (C=O). MS (m/z, %): 493 (M–20Me, 9), 406 (M–C₇H₅N₂ and OMe, 16), 405 (M–C₇H₅N₂S, 18), 262 (PPh₃, 72), 183 (PPh₂, 76), 108 (PPh, 40). Anal. calcd. for C₃₁H₂₇N₂O₄PS (554): C, 66.87; H, 4.91; N, 4.92%. Found: C, 67.15; H, 4.87; N, 5.05%.

Major isomer (*E*)-**4a** (69%): ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H}$ 3.21 and 3.79 (6H, 2s, 2OC*H*₃), 6.05 (1H, d, ³J_{PH} = 17.4 Hz, P–C–C*H*), 7.33–7.71 (19H_{arom}, m, 3C₆H₅ and C₇H₄N₂), 11.18 (1H, s, NH). ¹³C NMR (125.8 MHz, CDCl₃): $\delta_{\rm C}$ 40.82 (d, ¹J_{PC} = 123.1 Hz, P=C), 49.54 and 52.34 (2s, 2OC*H*₃), 60.48 (d, ²J_{PC} = 18.2 Hz, P–C–C*H*), 109.37, 109.61, 110.10, 112.96, 113.54 and 122.53 (6C, C₇H₅N₂), 126.09 (d, ¹J_{PC} = 91.0 Hz, C_{ipso}), 128.53 (d, ³J_{PC} = 12.2 Hz, C_{meta}), 132.25 (C_{para}), 133.48 (d, ²J_{PC} = 11.3 Hz, C_{ortho}), 165.40 (1C, N=C–S), 169.91 (d, ³J_{PC} = 12.4 Hz, C=O), 171.05 (d, ²J_{PC} = 14.2 Hz, P–C=*C*). ³¹P NMR (202.4 MHz, CDCl₃): $\delta_{\rm P}$ 23.8 (Ph₃P⁺–C).

Minor isomer (*Z*)-4a (31%): ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H}$ 3.71 and 3.79 (6H, 2s, 2OC*H*₃), 5.92 (1H, d, ³J_{PH} = 19.4 Hz, P–C–C*H*), 7.33–7.71 (19H_{aron}, m, 3C₆H₅ and

 $C_7H_4N_2$), 11.29 (1H, s, NH). ¹³C NMR (125.8 MHz, CDCl₃): δ_C 41.74 (d, ¹J_{PC} = 129.4 Hz, P=C), 50.66 and 52.54 (2s, 2OCH₃), 60.83 (d, ²J_{PC} = 18.8 Hz, P-C-CH), 109.39, 109.64, 110.14, 112.98, 113.60 and 122.78 (6C, $C_7H_5N_2$), 125.37 (d, ¹J_{PC} = 91.4 Hz, C_{ipso}), 128.94 (d, ³J_{PC} = 12.2 Hz, C_{meta}), 132.23 (C_{para}), 133.56 (d, ²J_{PC} = 10.0 Hz, C_{ortho}), 165.03 (1C, N=C-S), 168.41 (d, ³J_{PC} = 13.3 Hz, C=O), 170.60 (d, ²J_{PC} = 13.8 Hz, P-C=C). ³¹P NMR (202.4 MHz, CDCl₃): δ_P 24.8 (Ph₃P⁺-C).

3.2 *Diethyl-2-(2-mercaptobenzimidazole-s-yl)-3-(triphenylphosphanylidene)* succinate (4b)

White powder, mp 179–181 °C, 0.54 g, yield 93%, IR (ν_{max} , cm⁻¹) 1738 and 1603 (C=O). MS (m/z, %): 433 (M–C₇H₅N₂S, 22), 326 (M–PPh₂ and CO₂Et, 10), 320 (M–PPh₃, 9), 275 (M–PPh₃ and OEt, 12), 262 (PPh₃, 78), 247 (M–PPh₃ and CO₂Et, 38), 183 (PPh₂, 79), 108 (PPh, 33). Anal. calcd. for C₃₃H₃₁N₂O₄PS (582): C, 68.22; H, 5.45; N, 4.71%. Found: C, 68.04; H, 5.33; N, 4.81%.

Major isomer (*E*)-**4b** (69%): ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H}$ 0.49 and 1.29 (6H, 2t, ³J_{HH} = 7.2 Hz, 2OCH₂CH₃), 3.80 and 4.25 (4H, 2m, 2ABX₃ system, 2OCH₂CH₃), 6.11 (1H, d, ³J_{PH} = 17.9 Hz, P-C-CH), 7.37–8.05 (19H_{arom}, m, 3C₆H₅ and C₇H₄N₂), 11.28 (1H, s, NH). ¹³C NMR (125.8 MHz, CDCl₃): $\delta_{\rm C}$ 14.06 and 14.31 (2s, 2OCH₂CH₃), 40.54 (d, ¹J_{PC} = 123.2 Hz, P=C), 58.24 and 60.57 (2S, 2OCH₂CH₃), 61.38 (d, ²J_{PC} = 15.8 Hz, P-C-CH), 109.45, 109.70, 110.16, 113.09, 113.60 and 122.42 (6C, C₇H₅N₂), 125.63 (d, ¹J_{PC} = 91.9 Hz, C_{ipso}), 128.86 (d, ³J_{pc} = 12.2 Hz, C_{meta}), 132.23 (C_{para}), 133.54 (d, ²J_{PC} = 14.2 Hz, P-C=C). ³¹P NMR (202.4 MHz, CDCl₃): $\delta_{\rm P}$ 23.8 (Ph₃P⁺-C).

Minor isomer (Z)-**4b** (31%): ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H}$ 1.22 and 1.34 (6H, 2t, ³J_{HH} = 7.1 Hz 2OCH₂CH₃), 4.13 and 4.32 (4H, 2m, 2ABX₃ system, 2OCH₂CH₃), 5.87(1H, d, ³J_{PH} = 20.0 Hz, P-C-CH), 7.37-8.05 (19H_{arom}, m, 3C₆H₅ and C₇H₄N₂), 11.36 (1H, s, NH). ¹³C NMR (125.8 MHz, CDCl₃): $\delta_{\rm C}$ 14.13 and 14.25 (2s, 2OCH₂CH₃), 40.55 (d, ¹J_{PC} = 135.7 Hz, P=C), 58.24 and 60.42 (2s, 2OCH₂CH₃), 60.87 (d, ²J_{PC} = 16.2 Hz, P-C-CH), 109.48, 109.72, 110.19, 113.12, 113.63 and 122.34 (6C, C₇H₄N₂), 126.29 (d, ¹J_{PC} = 91.5 Hz, C_{ipso}), 128.90 (d, ³J_{pc} = 12.1 Hz, C_{meta}), 132.26 (C_{para}), 133.60 (d, ²J_{pc} = 9.4 Hz, C_{ortho}), 165.03 (1C, N=C-S), 170.32 (d, ³J_{PC} = 13.7 Hz, C=O), 170.48 (d, ²J_{PC} = 14.1 Hz, P-C=C). ³¹P NMR (202.4 MHz, CDCl₃): $\delta_{\rm P}$ 25.1 (Ph₃P⁺-C).

3.3 Dimethyl-2-(2-hydroxybenzimidazole-n-yl)-3-(triphenylphosphanylidene) succinate (6a)

Colorless crystals, mp 178–180 °C, 0.52 g, yield 96%; IR (v_{max} , cm⁻¹): 1724 and 1630 (C=O); MS, (m/z, %): 538 (M⁺, 1), 405 (M-heterocycle), 420 (M-2CO₂Me, 1), 183 (PPh₂, 100), 276 (M-PPh₃, 23), 262 (PPh₃, 91), 108 (PPh, 51).

Major rotamer (*E*)-**6a** (63%): ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 3.16 and 3.79 (6H, 2s, 2OCH₃), 5.32 (1H, d, ³J_{PH} = 16.4 Hz, P–C–*CH*), 6.96–7.78 (19H_{arom}, m, 3C₆H₅ and C₇H₄N₂), 9.86 (1H, s, OH); ¹³C NMR (125.8 MHz, CDCl₃), $\delta_{\rm C}$ 40.47 (d, ¹J_{PC} = 124.3 Hz, P=C), 49.32 and 52.63 (2OCH₃), 55.57 (d, ²J_{PC} = 16.1 Hz, P–C–*C*H), 126.27 (d, ¹J_{PC} = 91.6 Hz, C_{ipso}), 108.92, 108.96, 112.66, 120.93, 121.21 and 125.19 (6C, C₇H₄N₂), 128.78 (d, ³J_{PC} = 12.3 Hz, C_{meta}), 132.16 (C_{para}), 133.50 (d, ²J_{PC} = 9.9 Hz, C_{ortho}), 155.03 (1C, C₇H₄N₂), 169.62 (d, ³J_{PC} = 12.6 Hz, C=O), 171.71 (d, ²J_{PC} = 15.2 Hz, P–C=*C*); ³¹P NMR (202.5 MHz, CDCl₃): $\delta_{\rm P}$ 23.4 (Ph₃P⁺–C).

Minor rotamer (*Z*)-**6a** (37%): ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 3.70 and 3.77 (6H, 2s, 2OC*H*₃), 5.24 (1H, d, ³J_{PH} = 18.6 Hz, P–C–*CH*), 6.96–7.78 (19*H*_{arom}, m, 3C₆H₅ and C₇H₄N₂), 9.90 (1H, s, OH); ¹³C NMR (125.76 MHz, CDCl₃), $\delta_{\rm C}$ 40.85 (d, ¹J_{PC} = 132.7 Hz, P=C), 50.38 and 52.39 (2OCH₃), 56.12 (d, ²J_{PC} = 16.7 Hz, P–C–*CH*), 126.41 (d, ¹J_{PC} = 92.0 Hz, C_{ipso}), 108.89, 108.93, 111.80, 120.88, 121.26 and 125.23 (6C, C₇H₄N₂), 128.84 (d, ³J_{PC} = 12.3 Hz, C_{meta}), 132.18 (C_{para}), 133.58 (d, ²J_{PC} = 10.2 Hz, C_{ortho}), 155.24 (1C, C₇H₄N₂), 170.23 (d, ³J_{PC} = 15.8 Hz, C=O), 171.91 (d, ²J_{PC} = 15.2 Hz, P–C=*C*); ³¹P NMR (202.5 MHz, CDCl₃): $\delta_{\rm P}$ 24.1 (Ph₃P⁺–C).

3.4 *Diethyl-2-(2-hydroxybenzimidazole-n-yl)-3-(triphenylphosphanylidene)* succinate (6b)

Colorless crystals, mp 141–143 °C, 0.52 g, yield 92%; IR (v_{max} , cm⁻¹): 1733 and 1620 (C=O). MS, (m/z, %): 476 (M–2OEt, 61), 433 (M–C₇H₅ON, 24), 304 (M–PPh₃, 7), 262 (PPh₃, 74), 183 (PPh₂, 76), 108 (PPh, 35).

Major rotamer (*E*)-**6b** (71%): ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 0.47 and 1.29 (6H, 2t, ³J_{HH} = 6.8 Hz 2OCH₂CH₃), 3.76 and 4.21 (4H, m, 2ABX₃ systhem 2OCH₂CH₃), 5.29 (1H, d, ³J_{PH} = 17.0 Hz, P-C-CH), 6.96–7.83 (19H_{arom}, m, 3C₆H₅ and C₇H₄N₂), 9.82 (1H, s, OH); ¹³C NMR (125.8 MHz, CDCl₃), $\delta_{\rm C}$ 13.21 and 13.64 (2s, 2O-C-CH₃), 40.86 (d, ¹J_{PC} = 123.6 Hz, P=C), 59.13 and 60.57 (2S, 2OCH₂CH₃), 61.54 (d, ²J_{PC} = 14.3 Hz, P-C-CH), 108.83, 108.98, 112.32, 121.13, 121.39 and 124.81 (6C, C₇H₄N₂), 126.31 (d, ¹J_{PC} = 91.8 Hz, C_{ipso}), 128.57 (d, ³J_{PC} = 11.6 Hz, C_{meta}), 132.19 (C_{para}), 133.59 (d, ²J_{PC} = 9.8 Hz, C_{ortho}), 156.12 (1C, C₇H₄N₂), 169.93 (d, ³J_{PC} = 13.6 Hz, C=O), 170.29 (d, ²J_{PC} = 12.3 Hz, P-C=C); ³¹P NMR (202.5 MHz, CDCl₃): $\delta_{\rm P}$ 23.4 (Ph₃P⁺-C).

Minor rotamer (*Z*)-**6b** (29%): ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 1.21 and 1.33 (6H, 2t, ³J_{HH} = 7.1 Hz, 2OCH₂CH₃), 4.15 and 4.28 (4H, m, 2ABX₃systhem 2OCH₂CH₃), 5.19 (1H, d, ³J_{PH} = 19.3 Hz, P-C-CH), 6.96–7.83 (19H_{arom}, m, 3C₆H₅ and C₇H₄N₂), 9.85 (1H, s, OH); ¹³C NMR (125.8 MHz, CDCl₃), $\delta_{\rm C}$ 13.76 and 13.84 (2s, 2O-C-CH₃), 41.09 (d, ¹J_{PC} = 134.5 Hz, P=C), 59.25 and 60.61 (2s, 2OCH₂CH₃), 61.98 (d, ²J_{PC} = 15.8 Hz, P-C-CH), 108.54, 109.13, 112.24, 120.16, 121.76 and 125.69 (6C, C₇H₄N₂), 126.46 (d, ¹J_{PC} = 92.1 Hz, C_{ipso}), 128.61 (d, ³J_{PC} = 11.2 Hz, C_{meta}), 132.16 (C_{para}), 133.63 (d, ²J_{PC} = 9.8 Hz, C_{ortho}), 156.39 (1C, C₇H₄N₂), 168.14 (d, ³J_{PC} = 12.3 Hz, C=O), 171.82 (d, ²J_{PC} = 14.3 Hz, P-C=C), ³¹P NMR (202.5 MHz, CDCl₃): $\delta_{\rm P}$ 24.3 (Ph₃P⁺-C).

3.5 *Di-tert-buthyl-2-(2-hydroxybenzimidazole-n-yl)-3-(triphenylphosphanylidene)* succinate (6c)

Colorless crystals, mp 151–153 °C, 0.59 g, yield 95%; IR (v_{max} , cm⁻¹): 1720 and 1618 (C=O).

Major rotamer: 1H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 0.99 and 1.57 (18H, 2s, 20C*Me*₃), 5.09 (1H, d, ${}^{3}J_{\rm PH}$ = 18.1 Hz, P–C–C*H*), 6.92–7.96 (19H_{arom}, m, 3C₆H₅ and C₇H₄N₂), 9.92 (1H, s, OH); 13 C NMR (125.8 MHz, CDCl₃), $\delta_{\rm C}$ 28.25 and 28.42 (20C*Me*₃), 41.33 (d, ${}^{1}J_{\rm PC}$ = 132.8 Hz, P=C), 59.32 (d, ${}^{2}J_{\rm PC}$ = 18.2 Hz, P–C–C*H*), 79.28 and 81.68 (2s, 20C*Me*₃), 108.67, 109.24, 113.11, 120.51, 122.08 and 125.86 (6C, C₇H₄N₂), 127.01 (d, ${}^{1}J_{\rm PC}$ = 92.2 Hz, C_{ipso}), 128.51 (d, ${}^{3}J_{\rm PC}$ = 12.3 Hz, C_{meta}), 132.08 (C_{para}), 133.67 (d, ${}^{2}J_{\rm PC}$ = 9.7 Hz, C_{ortho}), 156.72 (1C, C₇H₄N₂), 169.11(d, ${}^{3}J_{\rm PC}$ = 13.5 Hz, C=O), 170.29 (d, ${}^{2}J_{\rm PC}$ = 12.3 Hz, P–C=C); 31 P NMR (202.5 MHz, CDCl₃): $\delta_{\rm P}$ 23.2 (Ph₃P⁺–C).

Acknowledgement

We gratefully acknowledge financial support from the Research Council of University of Sistan and Balouchestan.

References

- H.R. Hudson. In *The Chemistry of Organophosphorus Compounds, Vol. 1. Primary, Secondary and Tertiary Phosphines and Heterocyclic Organophosphorus III Compounds*, F. R. Hartley (Ed.), pp. 382–472, Wiley, New York (1990).
- [2] R. Engel. Synthesis of Carbon-Phosphorus Bonds, CRC Press, Boca Raton, Florida (1988).
- [3] J.I.G. Cadogan. Organophosphorus Reagents in Organic Synthesis, Academic Press, New York (1979).
- [4] B.E. Maryanoff, A.B. Reitz. Chem. Revs., 89, 863 (1989).
- [5] I. Yavari, R. Baharfar. J. Chem. Res., (S), 146 (1997).
- [6] I. Yavari, A.A. Esmaili, A. Ramazani, A.R. Bolbol-Amiri. Monatsch. Chem., 128, 972 (1997).
- [7] I. Yavari, M.R. Islami. J. Chem. Res., (S), 166 (1998).
- [8] A. Ramazani, A. Bodaghi. Tetrahedron Lett., 41, 567 (2000).
- [9] O.I. Kolodiazhnyi, R. Schmutzler. Synlett., 7, 1065 (2001).
- [10] Z.G. Wang, G.T. Zhang, I. Guzei, J.G. Verkade. J. Org. Chem., 66, 3521 (2001).
- [11] I. Yavari, H. Djahaniani, M.T. Maghsoodlou, N. Hazeri. J. Chem. Res. (S), 382 (1998)
- [12] I. Yavari, M. Bayat, M.T. Maghsoodlou, N. Hazeri. Phosphorus, Sulfur and Silicon, 177, 2599 (2002).
- [13] I. Yavari, M.T. Maghsoodlou, H. Djahaniani, N. Hazeri. J. Chem. Res. (S), 216 (1999).
- [14] M.R. Islami, Z. Hassani, K. Saidi. Synth. Commun., 33, 65 (2003).
- [15] G. Wittig. *Science*, **210**, 600 (1980).
- [16] A.W. Johnson, W.C. Kaska, K.A.O. Starzewski, D.A. Dixon. Ylides and Imines of Phosphorus, pp. 101–127, Wiley, New York (1993).
- [17] I. Yavari, M.R. Islami. Phosphorus, Sulfur and Silicon, 130, 229 (1997).
- [18] I. Yavari, M. Adib. Tetrahedron, 57, 5873 (2001).
- [19] I. Yavari, R. Baharfar. Tetrahedron Lett., 39, 1051 (1998).
- [20] M.R. Islami, Z. Hassani, H. Sheibani, B. Abdolahzadeh, N. Etminan. Tetrahedron, 59, 4993 (2003).
- [21] I. Yavari, M.R. Islami, H.R. Bijanzadeh. Tetrahedron, 55, 5547 (1999).
- [22] I. Yavari, M.T. Maghsoodlou. Tetrahedron Lett., 39, 4579 (1998).
- [23] H.J. Roth, A. Kleemann. *Pharmaceutical Chemistry*, Ellis Horwood, New York (1988).
- [24] M.T. Maghsoodlou, N. Hazeri, S.M.H. Khorassani, M. Nassiri, G. Marandi, G. Afshari, U. Niroumand, J. Sulfur Chem., 26, 261 (2005).